Electronic Effects of CF₃ Group in Polyfluorinated Toluenes: Infrared, Raman, and Ultraviolet Spectra

O. Kh. Poleshchuk¹, I. K. Korobeinicheva², O. M. Fugaeva², and G. G. Furin²

¹Tomsk Pedagogical University, Tomsk, Russia

²Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Received December 14, 2002

Abstract—Relying on analysis of experimental infrared, Raman, and ultraviolet spectra and on calculation of frequencies and forms of normal vibrations of polyfluorinated toluenes these compounds were established to be prone to quinoid structure, and the interaction of the CF_3 group with the polyfluorinated benzene ring was found to occur predominantly through the π -system.

A considerable mesomeric effect of CF₃ group (σ_R) 0.186) (for instance, σ_R of NO₂ group is 0.155 [1]) does not fit into the classical conjugation pattern. The various attempt of interpretation underlie two mechanisms [2]: (1) an interaction $\pi(F)$ -(Ph) which as inductive effect results in electron density transfer from the CF_3 group to the benzene ring; (2) an interaction $\pi(Ph)-\pi^*(CF_3)$ which causes the electron charge transmission from the benzene ring to the orbitals of π -symmetry belonging to the CF₃ group. However the dominant factor is the π -inductive effect caused by strong inductive attraction of electrons from the neighboring position of the ring; this effect is transmitted by the usual way involving the resonance in the ortho- and para-positions. A significant factor is the strong field effect of the CF_3 group. It was shown [3] for compounds PhCHlg₃ (Hlg = Cl, Br) that the interaction between Ph and CHlg₃ occurs via mechanism $\pi(Ph) - \pi^{-}(CHlg_3)$. With Hlg = F[3] as with substituted triphenylamines [4] the inductive effect prevails.

Investigations with the use of vibrational spectroscopy provide vast possibilities for the study of structural and electronic features of various compound classes. These methods give additional and sometimes essentially new information compared to the other analytical methods (including the popular NMR spectroscopy). The stretching vibrations of the CF₃ group in octafluorotoluene were the most thoroughly studied in [5–7]. The spectral bands corresponding to vibrations of the CF₃ group were identified, but significant discrepancies remained in their detailed assignment. For instance, in [6] were analyzed the IR spectra in vapor phase of C₆F₅CF₃ and $C_6F_5^{13}CF_3$, and it was indicated that in the region 1250–1140 cm⁻¹ three bands suffer the strongest shifts on introduction of a ¹³C marker in the CF₃ group. The strongest two among them, at 1242 (Δv 25) and 1176 (Δv 35 cm⁻¹) were interpreted as asymmetric (v_{as}) and symmetric (v_s) stretching vibrations of CF₃ group, and the weaker absorption band at 1200 (Δv 28 cm⁻¹) was assigned to vibrations of the C_{ar}-CF₃ bond. At the same time in [5, 7] to v_s (CF₃) was attributed a very strong band in the IR spectrum in the region 1348–1356 cm⁻¹, whereas v_{as} (CF₃) according to the value of symmetry band b_1 and b_2 was considered to be in the range 1154– 1177 cm⁻¹. In [7] the band at 717 cm⁻¹ was also assigned to vibration frequencies of octafluorotoluene were published.

The goal of this study was to investigate IR and Raman spectra of a series of polyfluoroaromatic compounds of $4-XC_6F4CF_3$ type where X are substituents of various character, to perform a complete interpretation of vibration spectra of octafluorotoluene, and to reveal the effect of the *para*-substituent X on the frequencies and forms of vibrations corresponding to CF_3 and C_6F_5 groups. The vibration spectra of the polyfluoroaromatic compounds under study are compiled in Table 1, and for octafluorotoluene labeled with ¹³C the spectra are given in Table 2. The calculation of frequencies and forms of the normal vibrations for compounds $C_6F_5CF_3$ and $C_6F_5^{-13}CF_3$ was carried out in the valence-force field approximation by the program [8].

In calculations for the C_6F_5 fragment of octafluorotoluene was used the force field of a pentafluorobenz-

Х		IR (CCl ₄)	Raman (C ₆ H ₁₂)		
	$v_{as}(CF_3)$	$v_{as}(CF_3)$	$v_s(CF_3)$	$v(C_{ap}-C)$	$IC_{ap} - C(-\log I)$
NH ₂	1135 m	1180 m	1239 w	1349 s	0.74 (0.132)
NMe ₂	1130 s	1170 m	1215 m	1349 s	0.74 (0.131)
NHMe	1132 s	1180 m	1245 m	1339 m	0.56 (0.252)
NHNH ₂	1145 s	1190 m	1235 m	1348 m	0.39 (0.409)
OMe	1145 s	1184 m	1237 v.s	1346 m	0.151 (0.820)
OEt	1143 s	1186 m	1230 v.s	1345 m	0.15 (0.827)
Me	1151 s	1186 m	1224 m	1344 m	0.11 (0.959)
SMe	1148 s	1170 m	1280 m	1338 m	0.10 (0.726)
SH	1160 s	1195 m	1296 m	1339 m	0.09 (1.018)
Н	1156 m	1188 m	1275 m	1346 m	0.06 (1.222)
F	1159 s	1194 m	1236 s	1351 m	0.09 (1.046)
Br	1153 s	1180 m	1267 w	1336 m	0.09 (1.030)
CH=CH ₂	1150 m	1180 m	1235 m	1335 s	0.46 (0.140)
NO ₂	1170 m	1200 m	1267 m	1334 s	0.33 (0.481)

Table 1. Experimental frequencies of stretching vibrations of CF_3 group and C_{ar} -C bond in polyfluorinated toluenes 4-XC₆Fd4CF₃ (cm⁻¹) (in solutions)

ene [9], and for the CF₃ group were taken the force constants of CF bonds and geometrical parameters from [10]. The variations of field were performed in the process of solving the inverse spectral problem. It should be noted that the force constants of the CF₃ group $q(CF_3)$ equal to 7.514 and are considerably smaller than those of the CF groups of the aromatic ring: q(CF) is 10.83, and $Q(C_{ar}-C)$ 9.255 is larger than the value of the C-C R_{C-C} bond 7.0 [11] (force constants presented in 10⁶ cm²).

Nonempirical calculations were carried out with the use of GAUSSIAN'98W software [12]. The geometry optimization and subsequent calculation of vibration frequencies and wavelengths in the UV spectrum of the octafluorotoluene were performed by the density functional method B3LYP with Becke [13] exchange functional and correlation functional of Lee, Yang, and Parr [14]. The basis 6-31G^{*} with accounting for diffuse functions on carbon and fluorine atoms was used in the calculations.

As seen from Table 2 the largest contribution (67 and 81%) the CF₃ group makes into the vibrations of b_2 and b_1 symmetry with the frequencies v_{calc} of 1207 (Δv 32) and 1177 (Δv 36) cm⁻¹. The corresponding bands are very weak in the Raman spectrum and strong in the IR spectrum. The calculated forms of these vibrations essentially depend on the spatial position of the CF₃ group with respect to the plane of the polyfluorinated benzene ring. These are different for presumable conformations where one of the C-F bonds of the trifluoromethyl group lies either in the plane of the aromatic fragment or is normal to it. We attempted to identify the conformations existing in solutions by recording the IR spectra of compounds $C_6F_5CF_3$ and $C_6F_5^{13}CF_3$ at lower temperatures. The bands at 1159 and 1194 cm⁻¹ broadened and revealed a complex structure, and cooling to -50°C did not permit an unambiguous determination of the stable conformation. The vibration spectra of octafluorotoluene in different states of aggregation were described in [5]. In going from crystalline state to liquid to gas the significant shifts were observed for two bands: 1138-1154-1177 and 1158-1166-1172 cm⁻¹ respectively. These bands were attributed to antisymmetric $(b_1 \text{ and } b_2)$ stretching vibrations of the CF₃ group. The other bands suffer insignificant (up to 3 cm^{-1}) changes. These features of spectra were not discussed in [5]. The frequency v_{calc} 1235 (Δv 16) cm⁻¹ (a_1) corresponds to the mixed vibration of the benzene ring and the trifluoromethyl group with a large contribution from the bonds C_{ar} -C and C-F of the CF_3 group (Table 2), and it is assigned to the symmetric vibration of the CF₃ group. In the IR and Raman spectra the corresponding band is of moderate intensity. The form of this vibration is insensitive to conformations. The largest contribution (27%) of C_{ar} -C bond is made to the symmetric a_1 vibration, v_{calc} 1348 (Δv 12) cm⁻¹ (see Table 2). In the Raman spectrum it appears as a strong polarized (p 0.1) band, and in the IR spectrum it is observed as a medium

V _{exp}			V _{calc}	$v_{\rm calc}^{a}$	Symmetry	Distribution of
Raman	$\operatorname{IR}(\operatorname{CCl}_4)(\Delta v^{13}\mathrm{C})$	IR (gas) (Δv^{13} C)	$(\Delta v^{-13}C)$			potential energy (%)
1665		1702	1	684	a_1	73 <i>Q</i> , 13β
	1660	1698	1	667	b_2	$72Q, 12\beta$
	1530	1550	1.	556	a_1	46 <i>Q</i> , 36 <i>Q</i> , 12β
	1515	1542	1.	542	b_2	47 <i>Q</i> , 35 <i>q</i>
1444	1433 (2)	1506 (6)	14	457	a_1	$35Q, 26Q$ (C _{ap} -C), 12β
	1400	1388	1	366	b_2	92 <i>Q</i>
1351	1349 (8)	1348 (12)	1.	332	a_1	36q, 27Q (C _{ap} -C), 17Q
	1236 (22) ^b	1235 (16)	11	249	a_1	47q, 13Q ($C_{ap}^{-}-C$), 8q (CF_{3})
1193	1194 (28) ^c	1207 (32)	1	198	b_2	$67q$ (CF ₃), 19β
	$1159 (35)^d$	1177 (36)			b_1	81 q (CF ₃), 16 β
1158	1150	1134 (1)	1	163	b_2	82 <i>q</i>
1090	1090	1061 (3)	1	103	a_2	52 q, 11 Q, 12 β
	1003	965 (1)	1	018	b_2	54q, 19Q, 9q (CF ₃)
	879	877 (2)		886	a_1	43q, 21 <i>q</i> (CF ₃), 13β
	786	752 (1)		787	b_2	91β
717	716 (4)	728 (2)		708	a_1	27 α , 24 q (CF ₃), 20 γ
587		552 (1)		584	b_2	40 <i>Q</i> , 31 <i>q</i>
556		470 (1)		543	a_1	35 α , 20 β , 16 q
467		469 (1)		446	b_1	80 γ , 20 q (CF ₃)
444		433		434	b_2	55α, 37β
360		367 (1)		359	b_2	56 γ , 23 q (CF ₃), 10 Q
342		338		338	b_1	46β , $52Q$, 8α
		326			a_1	93γ
304		313		300	b_2	80 γ , 8 Q
284		292		280	b_2	62β , $20Q$, 16γ
280		277		276	a_1	89β
267		249		267	b_2	92β
		231			a_1	40γ, 18β, 16 Q (C _{ap} -C)
120				129	b_2	79β, 14γ

Table 2. Experimental and calculated frequencies of normal vibrations (ν , cm⁻¹) of octafluorotoluene enriched with ¹³C isotope in the CF₃ group

^a Calculation by software GAUSSIAN'98W [12]. IR (gas) (Δv^{13} C). ^b 1241 (22). ^c 1201 (34). ^d 1177 (37).

band. According to the calculation this is a mixed vibration of the benzene ring and the trifluoromethyl group whose form is independent of the conformation of the compound. The strong band at 717 cm⁻¹ in the Raman spectrum shifted by 4 cm⁻¹ on labeling the CF₃ group with ¹³C, large contribution to the band was made by bonds and angles of the CF₃ group, and we assigned it to symmetric bending vibration of the trifluoromethyl group.

Our calculations of CF_3 group vibrations are well consistent with the data of [15] where the IR spectra have been studied and calculation of frequencies and forms of vibrations has been performed for *p*-, *m*-, and *o*-CNC₆H₄CF₃. For instance, the contributions into the potential energy of symmetric vibrations in *p*-trifluoromethylbenzonitrile involving the CF₃ group according to [15] are as follows: 1323 cm⁻¹, 20 (C_{ar}-C); 9 (CF₃); 1238 cm⁻¹, 14 (CF₃); for antisymmetric: 1176 cm⁻¹, 44 (CF₃); 1197 cm⁻¹, 81 (CF₃) (cf. with Table 2). The bands in the region 737-745 cm⁻¹ were assigned as in [15] to the symmetric stretching vibration of the CF₃ group. although its contribution to the potential energy was 8–21%, and the largest contribution to these vibrations made CCF angles.

As seen from Table 1, the frequencies of the stretching vibrations of CF_3 group and C_{ar} -C bond in the studied compounds $4-XC_6F_4CF_3$ are independent of the character of the X substituent in the *para*-position to the CF_3 group: the frequencies of these

Х	λ_{max} , nm	ε , 1 mol ⁻¹ cm ⁻¹	σ_p [2]
NH ₂	249	15490	-0.66
-	234 sh.	8910	
NMe ₂	282	16220	-0.6
2	242	3310	
	220	8130	
NHMe	261	19060	-0.592
	240 sh.	8910	
NHNH ₂	258	15490	-0.55
OEt	268	1180	-0.25
	226	8510	
	213	8910	
Me	272	1950	-0.17
	210 sh.	6920	
SMe	278	10230	-0.0
	210 sh.	8510	
SH	300	16590	0.15
	250	5250	
	226	7240	
Н	273	2360	0
	232 sh.	270	
\mathbf{F}^{a}	266	4860	0.062
	243	320	
Ι	272	2496	0.18
	242	9420	
	221	5470	
Br	278	2240	0.232
	228 sh.	8130	
	217	11750	
CF ₃	266	1410	0.551
-	245	250	
$CH=CH_2$	288	1820	
-	245	16980	

Table 3. UV absorption spectra of polyfluorinated toluenes $4-XC_6F_4CF_3$

^a Calculated for octafluorotoluene λ_1 239, λ_2 232 nm correspond to $\pi \rightarrow \pi^*$ -transition in the benzene ring.

vibrations do not undergo considerable changes. The intensity of the absorption bands assigned to C_{ar} -C bond vibrations in the Raman spectra of polyfluorinated toluenes (related to the band at 803 cm⁻¹ in the spectrum of cyclohexane) changes in parallel with σ_p substituent constants. Two linear relations are observed: for electron-donor substituents

$$\log I/I_0 = -(0.58 \pm 0.04)\sigma_n - (0.73 \pm 0.02), n 7, r 0.986;$$

and for electron-acceptor substituents

$$\log I/I_{o} = -(0.58 \pm 0.04)\sigma_{n} + (1.35 \pm 0.14), n 5, r 0.969$$

Similar correlations were first observed for *para*nitro-substituted benzenes [13] and *para*-substituted anilines [14]. They were rationalized by assumption that the strongly pronounced electropositive and electronegative qualities of the substituents tended to induce a quinoid structure in nitrobenzenes and anilines, and in the region where the sign of σ_p changed this trend diminished.

Our calculations of frequencies and forms of octafluorotoluene (I) vibrations { $\sigma_p(F)$ 0.062 [2]}, revealed the complex and mixed character of σ_s (CF₃) and v(C_{ar}-C). Significant contributions thereto come both from vibrations of CF₃ group and from the polyfluorinated benzene ring (see Table 2). The increase in force constants (and, consequently, in orders) of C_{ar}-C bond and diminishing of the corresponding values for C-F bonds in the CF₃ group also evidences the efficient interaction between CF₃ and C₆F₅ and supports the notion of the trend of compound I to the quinoid structure. The high intensity of the v(C_{ar}-C) vibration in the Raman spectrum is well consistent with the distinguished direction of polarizability and its derivative with respect to the normal coordinate.

The hyperconjugation should result in a red shift of the longwave maximum in the UV absorption spectra, and the inductive effect is accompanied with a blue shift [4]. Actually in the spectra of a number of polyfluorinated toluenes (X = Br, CH₃, F etc.) a red shift is observed and increase in the intensity of the maximum of the longwave absorption band. In the presence of strong electron-donor substituents (X = NH₂, NMe₂) the UV spectra suffer significant changes at replacement of a fluorine atom by a trifluoromethyl group indicating a transformation of the π -electron system of these toluenes (Table 3).

EXPERIMENTAL

IR spectra were recorded on spectrometer Specord M-80 from pellets with KBr (2:800 and 4:800 mg) or from solutions in CCl_4 (c 5, 1, 0.5%; d 0.1, 0.4, 0.6 mm respectively). The spectra in gas phase were registered in a gas cell, d 10 mm. The recording at various temperatures was carried out in standard liquid cells from solutions in CCl_4 (c 1.7, 1.8, 1.9, 2.0%; d 0.1 mm). The cooling to desired temperature was performed by passing cooling mixture EtOH-liquid nitrogen from a thermostat. The temperature was measured in the thermostat, and it differed from that in the cell by $0.4^{\circ}C$.

Raman spectra were registered on spectrometer Coderg PH-1. As excitation source served a heliumneon laser Spectra-Physics 125 (λ_{excit} 6328 Å) and argon laser ILA 120-1 (λ_{excit} 4880 Å). Internal intensities in the Raman spectra were estimated related to the line of internal reference cyclohexane at 803 cm⁻¹ (1 mol l⁻¹).

UV spectra of solutions in ethanol($c \ 1.10^{-4} \ \text{moll}^{-1}$) were recorded on spectrophotometers Specord UV-Vis and Beckman DU-8.

The isotope shifts of bands were measured with accuracy of 0.4 cm⁻¹. The content of isotope ¹³C in enriched samples was measured by mass spectra on Finnigan MAT MS-8200 (70 eV) (enrichment 60%).

The substances were recrystallized or distilled before registering IR, Raman, and UV spectra; the purity of samples was no less than 99.5% (GLC).

REFERENCES

- Gordon, A.J. and Ford, R.A., *The Chemist's Compaion*, New York: Wiley, 1972. Translated under the title *Sputnik khimika*, Moscow: Mir, 1976, p. 541.
- 2. Sheppard, W.A. and Sharts, C.M., Organic Fluorine Chemistry, New York: W.A. Benjamin, 1969.
- 3. Timosheva, A.P., Vul'fson, S.G., Kushnikovskii, Ermolaeva, L.V., and Vereshchagin, A.N., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1987, p. 558.
- Dapperheld, S., Steckhan, E., Grosse Brinkhaus, K.-H., and Esch, T., *Chem. Ber.*, 1991, vol. 124, p. 2557.

- Frankiss, S.G., Harrison, D.J., and Kynaston, W., Spectr. Acta, 1974, vol. 30A, p. 1225; Chem. Abstr., 1975, vol. 82, p. 57266.
- Petrov, A.K., Petrova, T.D., and Platonov, V.E., *Izv. SO Akad. Nauk SSSR, Ser. Khim.*, 1973, vol. 1(2), p. 148.
- Bailey, R.T. and Hasson, S.G., Spectr. Acta, 1968, vol. 24A, p. 1891; Chem. Abstr., 1969, vol. 70, p. 24332f.
- Gribov, L.A. and Dement'ev, V.A., Metody i algoritmy vychislenii v teorii kolebatel'nykh spektrov molekul (Methods and Algorithms of Calculations in Vibrational Spectra Theory), Moscow: Nauka, 1986, p. 496.
- Fugaeva, O.M. and Korobeinicheva, I.K., J. Mol. Struct., 1993, vol. 293, p. 205; Chem. Abstr., 1993, vol. 119, p. 15667x.
- Oberhammer, H.J., *Fluorine Chem.*, 1983, vol. 23, p. 147.
- Gribov, L.A., Dement'ev, V.A., Todorovskii, A.T., *Interpretirovannye kolebatel'nye spektry alkanov, alkenov i proizvodnykh benzolov* (Interpretation Vibrational Spectra of Alkanes, Alkenes and Benzene Derivatives), Moscow: Nauka, 1986, p. 496.
- 12. GAUSSIAN 98W. User's Reference, Fritsch, E. and Fritsch, M.J., Pittsburgh: Gaussian Inc. 1998, p. 280.
- 13. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
- 14. Lee, C., Yang, W., and Parr, R.G., *Phys. Rev.*, 1988, vol. 37, p. 785.
- 15. Yadav, R.A. and Singh, I.S., Proc. Indian. Acad. Sci., 1985, vol. 95, p. 471.